16 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI

THE PROPAGATION OF SHOCK WAVES IN A SEMIBOUNDED VOLUME

A, I, Starshinov

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol.

When a shock wave emerges from a pipe situated in a semibounded
volume a system of waves arises between the end of the pipe and the
bottom of the volume, and also in the gap between the pipe and the
side walls of the volume. Paper [1] considers the propagation of a
shock wave after emerging from the pipe until touching the side walls
of the volume. The present paper considers the gas motion in a semi-
bounded volume after the shock wave has traversed the volume and
made contact with the side walls.

In part 1 a physical model is constructed of the gas motion up to the
time when the primary shock wave reaches the bottom of the volume. In
part 2 relations are found which enable us to determine the stream
parameters in the semibounded volume up to the time when the pri-
mary shock wave arrives at the bottom of the volume. Section 3 con-
siders the motion of the reflected shock wave between the pipe and
the side walls of the volume.

NOTATION

N = Na is the velocity of propagation of the shock wave; u = ug, is
the velocity of gas particles; p = pp, is the gas density; p = pp; is the
pressure; M = u/a is the Mach number; A = u/a is the reduced veloc-
ity; a = aa, is the speed of sound propagation; k = ¢ /cv is the
adiabatic index; t = a;t/d is the dimensionless time; F = F/d® is the
area; V = V/d3 is the volume; d is the inside diameter of pipe [m}

t = time [sec].

Subscript 1 denotes gas parameters in the volume before the shock
wave has emerged from the pipe, subscript 2 denotes gas parameters
behind the shock wave front in the pipe, an overscore denotes dimen-
sionless parameters, while subscript 0 denotes parameters in the adia=
batically decelerated gas; an asterisk denotes critical stream parameters,

1. A pipe is situated in a semibounded volume e
(Fig. 1). A shock wave propagates along the pipewith
a velocity Nj, and the gas parameters are constant
behind the shock wave front.

The following cases of stream formation may oc-
cur depending on the stream parameters in the pipe
behind the shock wave front, and on the areas F, Fy,
F,.

(a) The velocity M, = 1, of the wake behind the shock-

wave front in the pipe and the value of the areas F, Fy,
F, are such that the pressure in the end plane of the
pipe is p; > 1, as a result of gas expansion behind the
shock wave. We assume that the pressure on both
sides of the end plane of the pipe is the same, and that
the division of the stream emerging from the tube to
the left, into the gap, and to the right, occurs in the
end plane of the pipe. It should be noted that the as-
sumption that the pressure is the same on both sides
of the end plane of the pipe may be replaced by any
other picture of the flow pattern in this zone. The as-
sumption which has been adopted is justified by the
good agreement between calculated values of the
stream paraméters and experiment performed in
the Laboratory of Gasdynamics of Leningrad State
University. Since p, > 1, a shock wave will propagate
with a velocity Ny, in the gap between the pipe and the
side walls of the volume (Fig. 1a). Since the veloc-
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ity of the stream emerging from the pipe is super-
sonic, there is a velocity increase when the stream
expands in the volume, while the pressure decreases.
On the other hand, when the area of the shock wave in
creases from the value F to ¥y on emerging from the
pipe, the pressure and gas velocity at the shock wave
front decrease.

In order to avoid the resulting contradiction we must
postulate the presence of a secondary shock wave be-
tween the end of the pipe and the primary shock wave
passing out of the pipe. The secondary shock wave
will propagate relative to the gas particles which have
left the pipe in a direction opposite to their motion.
The gas stream will suffer a braking effect on passing
through the secondary shock wave. The gas in the re-
gion between the primary and secondary shock waves
is divided by a contact surface (steady-state discon-
tinuity). Gas which has emerged from the pipe is on
the left of the contact surface, while gas which has
been in the volume is on the right,

(b) The velocity M; = 1 of the wake behind the shock
wave will propagate in the gap. The gas-flow config-
Fy, F, is such that the pressure in the end plane of
the pipe is py; < 1 as a result of gas expansion behind
the shock wave. We assume, as before, that the pres-
sure on both sides of the end plane of the pipe is the
same and that the streams from the gap and from the
pipe mix in the end plane of the pipe. A rarefaction
wave will propagate in the gap. The gas flow config-
uration is represented in Fig. 1b,

It may be shown by arguments similar to those of
(a) that a primary shock wave, a contact surface, and
a secondary shock wave will propagate in the region
between the end of the pipe and the bottom of the vol-
ume.

(c) The velocity M, < 1 of the wake behind the snock-
wave front in the pipe and the value of the areas F,
Fy, F,is such that the gas is accelerated to a value
M; =1 in the rarefaction wave which has passed into
the pipe. Because of gas expansion behind the shock
wave which has passed into the volume, the pressure
in the end plane of the pipe may be either p, > 1, or
pg< 1 as in cases (a) and (b) previously considered.
The flow pattern in the semibounded volume will then
be the same as in (a) or (b), respectively.

In (a), (b), and (c) values of the initial data Ny, F,
Fy, F; were considered forthe case in which the stream
velocity in the volume in front of the secondary shock
wave front is higher than the propagation velocity of
the secondary shock wave, The secondary shock wave
propagates down stream relative to the walls of the
volume,

(d) As the area Fy increases the stream velocity
in front of the secondary shock wave increases more
slowly than the velocity of the secondary shock wave.
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Fig. 1. Gas flow pattern in a semibounded volume for various
values of the shock wave intensity in the pipe and for various

values of the areas; a) for My =

1, py >1; b) for M= 1, py <

<1; ¢) for M3 < 1, ps > 1; d) for My > Ny3/a,.

There will come a time when the stream velocity will
be equal to the secondary shock wave velocity, and
then the secondary shock wave will not move relative
to the walls of the volume. As Fy increases further
the boundaries of the secondary shock wave break
away from the side walls of the volume; this wave is
then situated in the immediate locality of the end of
the pipe. A shock wave of the same intensity as the
original shock wave then propagates in the gap. The
flow configuration is represented in Fig. 1d.

(e) The wake velocity behind the shock wave front
in the pipe is M, < 1, and the values of the areas F,
Fy, ¥, such that the gas in the rarefaction wavewhich
has passed into the pipe is accelerated to Mg < 1. In
this case p, > 1, there is no secondary shock wave,
and a shock wave propagates in the gap of the same
intensity as the primary shock wave in the region be-
tween the end of the pipe and the bottom of the volume
(flow pattern as in Fig. 1le¢).

2. (a) The equations of conservation of mass, mo-
mentum, and energy for the control surfaces situated
at the open end of the pipe, in the gap between the end
of the pipe and the shock wave, and between the sec-
ondary shock wave and the end of the pipe have the
form

UsPel = UepsFy + uy'p/ Fs,

Poe*F + poF = puug®Fy 4 Pa'Us*Fy + p,F; + p,F, ,

paUs I (k_l_ﬂ + u ) = PautyFy ( l + %) -+

1 py —1 pg
Pr u® (2.1)
+ P4 Uy FZ ( | P4 T) .

It is assumed that the gas in front of the secondary
shock wave propagates isentropically. Figure la
should be consulted for the notation employed. Using
the condition of dynamic compatibility at the shock-
wave in the gap we can write out relations express-
ing uj and pj in terms of py:

_ r__%psat-1
=(pa—10f, o/ ="2E,
1 k41 Ic~'l k-1
i= (Gt S w= . @2)

Solving the system of equations (2.1), (2.2) for py,
we obtain

ge=Fof (pa—1) (25 +0) +
[’”—(Fl'—Fz)m—Zsz] Fy
+ T Fucf X

1
X{klj1 +apr [m—(Fl—Fg)p4—2F2b]},
q = pauaF, e=kj—+*"

(Pa—1)
El(k+ 1)+ (k—1)pa]’

m = PeUsF + p.F, b=
(Pa—1) [(k 1) pa -+ (E —1)]
[(% 1) 4 (k— 1) pa] ’

m—-(Fl——Fz)p4———2ng
g — Facf !

C =

Ug =

_ (g — Facf
0= T — (i — Fa) pa—2Fb]

(2.3)

The relations cited allow us to determine thez
stream parameters in the region between the shock
wave in the gap and the secondary shock wave,

Using the condition of dynamic compatibility at the
primary and secondary shock waves we obtain

[(v +1) Nag® — 71 = pal(y + 1) Vs [ a® — 1},
2 (Nis—1/Nug) [ (k 4+ 1) =
=us—2(Nyp—a?[Ni)/(k+1),
7 = (k—1)/(k+1) . (2.4)

We now determine the values of Ny; and Ny, by
solving the system of equations (2.4). The remaining
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stream parameters in the region between the primary
and secondary shock waves can be found from dy-
namic compatibility conditions.
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Fig. 2. Gas flow pattern in a semi-
bounded volume after the reflected
shock wave has passed into the gap.

(b) The equations of conservation of mass, mo-
mentum, and energy for control surfaces situated at
the outlet from the open end of the pipe, between the
secondary shock wave and the end of the pipe, have
the form

ugng = U4P4F 1— U4'P4’F 25
PaUaF -+ poF = puF1— 04'ud'2Fy 4 poF1 — piFx,

us?

ouF (g 2 1) =

1 p

— patiaFs (TcTTE u—éz->———p4’u4'F2 (L Py 'i“—z) @2.5)

F—ips U2

It is assumed that the gas expands isentropically
up to the secondary shock wave. Thenotation employed
is given in Fig. 1b.

At the rarefaction wave we have

uy = %(1 — i1 Ky, pd =plE.  (2.6)

Solving Eqgs. (2.5) and (2.6) for p, gives

[m+ Foh—(Fi—F)pad Py [ pa 1
ge = 7+ Fm {k—i ar, M+

Fah
+th—(F1—F2)P4]} — Fanpgiix (_1;3_4_1 n —%-),
h= Tk’éT)z (1 — pyhe=1) [k)2 p ke,

2
n= o (1 _ p;/z(k—l)/k} p4l/k,
m + Foh — (F1— F) pu

q - Fan ’

— (g Fan)
LCT iy oty ey ) Sy 2y B

Usg =

2.7)

These relations together with Egs. (2.4) enable us
to determine all the stream parameters in the region
between the primary shock wave and the rarefaction
wave.

In case (c) using the condition M3 = 1, the flow para-
meters at the pipe outlet may be found from the famil-
iar relations for a rarefaction wave, The form of the
equations determining the flow parameters in the vol-
ume will be the same as in cases (a) and (b). Instead
of initial flow parameters denoted in (a) and (b) by the
subscript 2, we introduce initial parameters denoted
by the subscript 3, which hold on leaving the rarefac-
tion wave on condition that Mg = 1,

(c) Expressing the values of the terms in the obvi-
ous identity

Ps pos* P
Ds = —— 2L

" Pis P P2 2

as functions of A and Nj;, we obtain

1 — 7As? \E/(k-1)
[+ ) Nt — 11 = (7= ) %

x (f‘-—x%)m_” [(r + 1) N —1]he, 2.8)

where the notation is in accordance with the flow con-
figuration (see Fig. 1d.)

Using the condition of dynamic compatibility to ex~
press the value of uy in the identity us = A5"ax", and
a*{ in terms of a; and Ay, we obtain

2 1 2\ a
N o — n 2 2.9
k+1( 1 Nla) As (k—1> A )

It is assumed that the stream behind the second-
ary shock wave in front of the contact surface ex-
pands isentropically to an area equal to the sum of
the transfer cross sections (F; + F,). If F denotes
the surface area of the secondary shock wave we
have from the equation of continuity

7 ~£< 1 — Ay \1/(k=1)
Fyo T b 1—7»227) ’
Py am [ A— AP \L/GED
Fy+ Fy —7\‘57%(1—'1’/7_%2) :
Thus
F o A" [ (T — A1) (1 —As"%7) :|1/(k‘1) 2.10)
Fi+F — Th 01— &M(1—1/AD) :

Using (2.8) and (2.10) to eliminate A,, we obtain

[+ 7)) N2 —71] =

O F 1— 22\ g
= 0N = (55 ) -

2.11)

The values of Ny; and A} are determined from the
solution of the system of Egs. (2.9)and (2.11). The
remaining parameters may be found from the con-
ditions at the primary shock wave.

(d) In this case determining the stream parameters
in the volume reduces to one of the problems con-
sidered in paper [2]. Using the conditions of dynamic
compatibility at the primary shock wave, the condi-
tions at the rarefaction wave in the pipe, as well as
the continuity equation, we obtain the following sys-
tem of equations for My, M}, and Ny5, the solution
of which is determined by the stream parameters in
the volume:

F Ms" ( 11 aMy? >1/zx
3

i By, M; \ILaMs?

2 __ oM \EIG-) 1 oM \E/e
[(1+7)Nus 7]—(mﬁ) <1+QM3)

Fri (o) =

g afl oMy s 4 aM2\Y: k—1
=M (1—f—aM3 <1+aM5"2) @ a=—5=. (212
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3. After the primary shock wave reaches the bottom of the volume,

it is reflected and begins to propagate up stream interacting with the
contact surface and the secondary shock wave (if one is formed). The
results of this interaction may be calculated from the relations given

in paper [3]. In what follows we consider the propagation of the reflect-

ed shock wave in the gap from the moment when it arrives at the end
plane of the pipe. if the problemisstrictly posed, then in order to find the
flow pzrameters in the gap behind the shock wave we must integrate
a system of three partial differential equations with extremely com-
plicated boundary conditions. At present such a problem may only be
solved numerically. In the present paper the problem is solved on the
following assumptions: a) the presence of a contact surface between the
reflected shock wave which has passed into the pipe and the end plane
of the pipe is neglected; b) the lengthwise change of gas parameters
in the region between the end plane of the pipe and the shock wave
OCCUIS instanténeously; c) there are no wave-like processes in the vol-
ume between the end of the pipe and the bottom of the volume, and
the volume is filled in a quasi-stationary manner. Figure 2 gives the
flow pattern and the notation used in solving the problem.

The gas from the volume flows into the gap with a flow rate Q, =
pyu+Fe, where n7, p7 are the gas velocity and density, respectively,
behind the shock wave and Qq is the rate of flow of gas from the pipe.
The equation of mass conservation for the volume V is then written
in the following manners

Vdpg/ dt = Q1 — Qa, (3.1)

where pg is the mean density at the time t in the volume V.

We now express pg and uy in (3.1) in terms of pz. The equations
of conservation of mass, momentum, and energy for the control sur~
faces situated between the shock wave and the end plane of the pipe
as well as in the volume V have the form

ugPeF 1 = UgpeFa = 0,

peue®F1 + peF1 = prusPFa 4 pofa = @,
1 pe , ud
panels (o oo+ ) =

1 p, ou
£ '—"—>=¢. (3.2)

=p7u7F2(k—~1~F;' D

Solving this system we have

0D 4 [0202 — 4 (k — 1) (2 — k) 0%p] 2
Ps = 2F 19 (k—1) . (3.3)

Here p7 and uy are expressed in terms of py using the conditions
of dynamic compatibility

%P7/ pd —’1 [ ( P ) — ,:| p4’
SO ol T o |-t )R =,
Pr=prs=, pr/ps Ug==|ag P2 + Us Po

1 2 p7 Y/’

Rz(u—m/m’k—i p |

(minus for pg < 1, plus for ps > 1). Differentiating (3.3) with respect
to py we obtain

dps = {AC -+ (24B — EuzPp:? [4u7'p:pr + 3uspr + wipapr’ +
+ (& —1) (BugPp?us’ 4 2up)]) C [ (2H) —
— (B + H) [{us'pr + u7ps’) [ (b — 1) +
+ (BuPur'pr 4 P} 21} o [ (2CF1) dpr

A Surtuy p7? 4~ 2uPps + U papr + wspy -+ urpapy
- k—1 ’

3,2
P i i -+ Pritzpe

F—1 ,
e u7’py urAppr u%pA
C=g=71 1t 2 > D=7 P
4@=K) o o, 2=k
=Tm—1p > =\ “’4k—1D) g

pr =[x —pr/ed) -+ (%p7 /pd’ — )] (% — ps [ ps'y 2py,
uy’ = {[R -+ (pr/ ps’ — V)R (k — 1)1 %
X (x—p7/pd) 2 pr [pg — lpr/ o’ — 1) R—ugl} (p4' /oo (3.4)

Using (3.4) to replace the value of dpg in (3.1) and integrating,
we obtain
¢ Vit d
pr) ape
== e 3.5
) 02 @3

P

where o, isthe gas density behind the shock wave which has passed
into the gap at the moment when it passed the end plane of the pipe;
f(p7) is the facror in front of dpy in formula (3.4). The moment when
the reflected shock wave passes the end plane of the pipe is chosen as
the time origin. The quantity p,, is determined from the flow rate
equation at the initial moment when ¢ = 0; ugp,Fy= u.,,0,, F, . AL
the front of the shock wave which has passed into the gap we have

of (Nox o ug') = pyp (Now — 2,0, (3.6}

where Ny is the velocity of shock wave propagation in the gap; the
minus sign is taken for p4 < 1, the plus sign for pg> 1. Using the re-
lation for us(py) at the shock wave and also the expression (3.6), from
the condition that the flow rates should be equal we have

7

ugpeF'1 . ( PTu 1) H”p‘;' u4'p4,
Pa

Ppfa o P2 P

R——(-———————i 2 h)’ @
o\ w—py, /e E—1 p ] :

Here ug and pg are the values at the shock wave which has arrived
at the end plane of the pipe after being reflected from the bottom of
the volume.

The integral (3.5) is evaluated numerically. The integration leads
to the function py(t). The remaining gas parameters behind the shock
wave, as well as the law of motion of the shock wave in the gap, are
determined from the conditions of dynamic compatibility at the shock
wave front,
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